Nuprl Lemma : swap_adjacent_decomp
4,23
postcript
pdf
A
:Type,
i
:
,
L
:
A
List.
i
+1<||
L
||
(
X
,
Y
:
A
List.
(
L
= (
X
@ [
L
[
i
];
L
[
i
+1]] @
Y
) & swap(
L
;
i
;
i
+1) = (
X
@ [
L
[
i
+1];
L
[
i
]] @
Y
)
A
List)
latex
Definitions
hd(
l
)
,
i
<
j
,
i
j
,
{
T
}
,
SQType(
T
)
,
P
Q
,
Dec(
P
)
,
True
,
P
Q
,
T
,
P
Q
,
as
@
bs
,
swap(
L
;
i
;
j
)
,
Prop
,
l
[
i
]
,
i
j
<
k
,
{
i
..
j
}
,
||
as
||
,
tl(
l
)
,
,
t
T
,
x
:
A
.
B
(
x
)
,
P
Q
,
i
j
,
P
&
Q
,
x
:
A
.
B
(
x
)
,
False
,
A
,
A
B
Lemmas
ge
wf
,
nat
properties
,
nat
wf
,
length
wf1
,
tl
wf
,
le
wf
,
select
wf
,
swap
wf
,
append
wf
,
squash
wf
,
true
wf
,
length
tl
,
list
extensionality
,
decidable
int
equal
,
select
cons
tl
,
select
tl
,
swap
length
,
swapped
select
,
list
decomp
,
hd
wf
,
length
cons
,
non
neg
length
,
cons
one
one
,
member
wf
,
swap
cons
origin